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Abstract Recent advances in large-scale genome sequencing have led to the rapid accumulation of amino acid
sequences of proteins whose functions are unknown. Since the functions of these proteins are closely correlated with their
subcellular localizations, many efforts have been made to develop a variety of methods for predicting protein subcellular
location. In this study, based on the strategy by hybridizing the functional domain composition and the pseudo-amino acid
composition (Cai and Chou [2003]: Biochem. Biophys. Res. Commun. 305:407–411), the Intimate Sorting Algorithm
(ISort predictor) was developed for predicting the protein subcellular location. As a showcase, the same plant and non-
plant protein datasets as investigated by the previous investigators were used for demonstration. The overall success rate by
the jackknife test for the plant protein dataset was 85.4%, and that for the non-plant protein dataset 91.9%. These are so
far the highest success rates achieved for the two datasets by following a rigorous cross validation test procedure, further
confirming that such a hybrid approach may become a very useful high-throughput tool in the area of bioinformatics,
proteomics, as well as molecular cell biology. J. Cell. Biochem. 91: 1197–1203, 2004. � 2004 Wiley-Liss, Inc.
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Given the sequence of a protein, how can we
predict which subcellular location it belongs to?
This is currently a very hot topic in molecular
and cell biology because the localization of a
protein in a cell is closely correlated with its
biological function (see, e.g., [Watson et al.,
1987; Alberts et al., 1994; Lodish et al., 1995;
Chou et al., 1998, 1999]). Also, the number of
protein sequences entering into databanks has
been rapidly increasing. It is anticipated that
many more new protein sequences will be
derived soon owing to the recent success of the
human genome project, which has provided an
enormous amount of genomic information in
the form of 3 billion bp, assembled into tens of

thousands of genes. In view of this, the impor-
tance to deal with such a problem is not only self-
evident, but the challenge will also become even
more critical and urgent in the near future.
Actually, many efforts have been made trying
to develop different computational methods for
fast predicting the subcellular locations of pro-
teins [Nakai and Kanehisa, 1992; Nakashima
and Nishikawa, 1994; Cedano et al., 1997;
Claros et al., 1997; Reinhardt and Hubbard,
1998; Chou and Elrod, 1999; Emanuellson et al.,
2000; Pan et al., 2003; Zhou and Doctor, 2003].
Of these methods, some [Nakai and Kanehisa,
1992; Claros et al., 1997] were based on the
N-terminal sorting signals. Their merit is with
a clear biological implication because newly-
synthesized proteins in vivo are governed by an
intrinsic signal sequence to their destination,
whether they are to pass through a membrane
into a particular organelle, to become integrated
into the membrane, or to be exported out of the
cell [Blobel, 1976]. However, as pointed out
by Reinhardt and Hubbard [1998], ‘‘in large
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genome analysis projects genes are usually
automatically assigned and these assignments
are often unreliable for the 50-regions.’’ ‘‘This
can lead to leader sequences being missing or
only partially included, thereby causing pro-
blems for prediction algorithms depending on
them.’’ Therefore, most of the existing algo-
rithms were actually based on the assumption
that a protein could be represented by its
amino acid composition derived from the entire
sequence. However, the amino acid composition
consists of only 20 components, each repre-
senting the occurrence frequency of 1 of the
20 native amino acids in a given protein. Thus,
in the prediction algorithms developed from
such an assumption, a protein would be for-
mulated by a 20D (dimensional) vector [Chou
and Zhang, 1993; Chou, 1995]. By so doing, all
the sequence-order and sequence-length effects
of a protein would be totally ignored and the
prediction method based on the amino acid
composition alone must bear a considerable
intrinsic limitation. To avoid completely ignor-
ing the contribution of the sequence-order
effects, two different approaches, the so-called
pseudo-amino acid composition approach [Chou,
2001] and the functional domain composition
approach [Chou and Cai, 2002], was proposed.

The pseudo-amino acid composition consists of
20þ l components, of which the first 20 compo-
nents are the same as those in the conventional
amino acid composition, and the components
from 20þ 1 to 20þ l represent l sequence-order
correlation factors of different ranks. It is the
additional l components that have incorporated
some sequence-order effects [Chou, 2001]. How-
ever, the pseudo-amino acid composition only
includes the partial (but not complete) sequence-
order information, andhence may still misssome
information that might be immediately related
to the function of a protein.

Subsequently, a completely different ap-
proach, the so-called functional domain com-
position [Chou and Cai, 2002] was proposed
that contained the information of various func-
tional domain types. The introduction of the
functional domain composition represents an
important progress in directly relating the
localization of proteins with their function.
Unfortunately, the current functional domain
database [Murvai et al., 2001] is far from com-
plete yet. Hence not all proteins can be properly
defined by the database, leading to some setback
in practical application [Chou and Cai, 2002].

In view of this, a strategy was proposed to
represent a protein by hybridizing the func-
tional domain composition and pseudo-amino
acid composition [Cai and Chou, 2003]. The
hybridization makes allowance for bringing out
the best in each other. With such a strategy, the
Intimate Sorting Algorithm (ISort predictor) is
developed to predict the subcellular localization
for plant and non-plant proteins, respectively,
and the prediction quality has been further
improved.

Hybridization of Functional Domain
Composition and Pseudo-Amino

Acid Composition

The original concept of the functional domain
composition and the detailed procedure of how
to use it to represent a protein were given in a
previous study [Chou and Cai, 2002], where the
functional domain composition was defined in
the SBASE-A database [Murvai et al., 2001].
The SBASE-A database consists of 2,005 func-
tional domains. With each of these domains as
a base, a protein was defined as a 2005D vector
in terms of its functional domain composition.
In this study, the InterPro database, i.e.,
the integrated domain and motif database
[Apweiler et al., 2001], was used to define the
functional domain composition of a protein.
InterPro release 5.2 (September 2002) contains
5,875 entries. With each of the 5,875 functional
domains as a base, a protein can be defined as a
5875D vector, as illustrated by the following
procedures.

(1) Use the program IPRSCAN [Apweiler et al.,
2001] to search InterPro database for a given
protein, if there is a hit (e.g., IPR001938,
meaning the protein contains a sequence
very similar to that of the 1938th domain of
the InterPro database), then the 1938th
component of the protein in the 5875D
functional domain space is assigned 1;
otherwise, 0.

(2) The protein can thus be explicitly formu-
lated as

X ¼

x1

x2

..

.

xi
..
.

x5875

2
66666664

3
77777775
; ð1Þ

1198 Chou and Cai



where

xi ¼
1; hit
0; otherwise

�
ð2Þ

It can be seen from the above equations that,
instead of the 20D space [Chou and Zhang,
1993; Chou, 1995] in terms of the conventional
amino acid composition, or the (20þ l)D space
of the pseudo-amino acid composition [Chou,
2001], or the 2005D space of the functional
domain composition [Chou and Cai, 2002] based
on the SBASE-A database [Murvai et al.,
2001], a protein is now defined in a 5875D space
based on the InterPro database [Apweiler et al.,
2001].

As mentioned above, since the current func-
tional domain database is still far from com-
plete, many proteins might not get any hits by
following the above procedure and hence have
no definition. For those proteins which could not
be defined in the functional domain space, the
pseudo-amino acid composition [Chou, 2001]
was adopted to represent them. Using the
pseudo-amino acid composition as a comple-
mental approach has the following advantages:
(1) a protein with a given sequence can always
be uniquely defined; (2) some sequence-order
effects can be taken into account. According
to the concept of the pseudo-amino acid com-

position, a protein is formulated as [Chou, 2001]

X ¼

p1

p2

..

.

p20

p20þ1

..

.

p20þl

2
66666666664

3
77777777775
; ð3Þ

where the first 20 components are the same as
those in the conventional amino acid composi-
tion and the components p20þ1; . . . ; p20þl are
associated with l different ranks (Fig. 1) of
sequence-order correlation factors as formu-
lated by l sub-equations of the following
equation:

t1 ¼ 1
L�1

PL�1

i¼1

Ji;iþ1

t2 ¼ 1
L�2

PL�2

i¼1

Ji;iþ2

t3 ¼ 1
L�3

PL�3

i¼1

Ji;iþ3; ðl < LÞ:
. . . . . . . . . . . . . . .

tl ¼ 1
L�l

PL�l

i¼1

Ji;iþl

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

In the above equation, L is the chain length of
the protein concerned, t1 is called the 1st-rank

Fig. 1. A schematic drawing to show: (a) the 1st-rank, (b) the 2nd-rank, and (c) the 3rd-rank sequence-order
correlation mode along a protein sequence. Panel a: Reflects the correlation mode between all the most
contiguous residues; panel b: That between all the 2nd most contiguous residues; and panel c: That between
all the 3rd most contiguous residues.
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coupling factor that incorporates the sequence-
order correlation between all the most contig-
uous residues along a protein chain (Fig. 1a), t2

the 2nd-rank coupling factor for all the 2nd most
contiguous residues (Fig. 1b), t3 the 3rd-rank
coupling factor for all the 3rd most contiguous
residues (Fig. 1c), and so forth. The coupling
factor Ji, j in Equation 4 is a function of amino
acids Ri and Rj that is defined by their char-
acteristic quantities, such as the hydrophobicity
value, hydrophilicity value, and side chain mass
[Chou, 2001, 2002]. It can be seen from Figure 1
that the sequence-order effect of a protein is,
to some degree, reflected via a set of discrete
numbers t1; t2; t3; . . . ; tl; as formulated in Equa-
tion 4. Actually, the first 20 components of
Equation 1 reflect the conventional amino acid
composition effect, while the components from
20þ 1 to 20þ l reflect some sequence-order
effect. A set of the 20þ l components as
formulated by Equations 3–4 is called the
pseudo-amino acid composition for protein X.
Using such a name is because it still has the
main feature of the conventional amino acid
composition; but on the other hand, it contains
the information beyond the conventional amino
acid composition. Generally speaking, the lar-
ger the number of these correlation factors, the
more the sequence-order effects incorporated.
However, the number l cannot exceed the
length of a protein (i.e., the number of its total
residues). For example, if a protein consists of
50 amino acid residues, then its pseudo-amino
acid composition can contain as large as
20þ 50¼ 70 components, corresponding to a
70D vector. On the other hand, if the number ofl
is too large, the overall success rate by jackknife
tests might be reduced [Chou, 2001]. Therefore,
for different training datasets, l may have
different optimal values. For the current study,
the optimal value for l is 27; i.e., the dimension
of the pseudo-amino acid composition consid-
ered here is 20þ 27¼ 47. Given a protein, the 47
pseudo-amino acid components in Equation 3
can be easily derived by following the proce-
dures as elaborated in the original study [Chou,
2001] that has first introduced the concept of
pseudo-amino acid composition.

ISort Predictor

Suppose there are N proteins X1;X2; . . . ;XNð Þ
which have been classified into categories 1,
2, . . .,m. Now, for a query protein X, how can we
predict which category it belongs to? To deal

with this problem, below we shall introduce a
new algorithm, the so-called ISort predictor.
First, let us define the similarity between X and
Xi ði ¼ 1; 2; . . . ;NÞ given by

FðX;XiÞ¼
X �Xi

Xk k Xik k ; ði ¼ 1; 2; . . . ;NÞ ð5Þ

where X �Xi is the dot product of vectors X
and Xi, and Xk kand Xik k their modulus, re-
spectively. Obviously, when X � Xi, we have
FðX;XiÞ¼ 1; meaning they have perfect or
100% similarity. Generally speaking, the simi-
larity is within the range of 0 and 1; i.e.,
0 � FðX;XiÞ � 1. Accordingly, the ISort pre-
dictor can be formulated as follows. If the simi-
larity between X and Xkðk ¼ 1; 2; . . . ; or N) is
the highest; i.e., Equation 6

FðX;XkÞ
¼ Max FðX;X1Þ;FðX;X2Þ; . . . ;FðX;XNÞ

� �
ð6Þ

then the query protein X is predicted belonging
to the same category as of Xk. If there is a tie,
the query protein is not uniquely determined,
but cases like that rarely occur.

As mentioned above, since the query protein
may or may not get a hit in search the InterPro
database [Apweiler et al., 2001]. If the query
protein has no hit found during the prediction
process (cf. Equation 2), it cannot be defined
(except for a null vector) in the 5875D functional
domain composition space (cf. Equation 1).
Under such a circumstance, the query protein,
as well as all the proteins in the training
dataset, should be defined in the (20þ l)D¼
47D pseudo-amino acid composition space as
given by Equation 3 in operating the ISort
predictor. However, if the query protein can be
defined in the 5875D functional domain com-
position as given by Equation 1, the prediction
should be carried out based on all those proteins
in the training set that can be defined in the
same 5875D space as well. Accordingly, the
current ISort predictor actually consists of two
sub predictors: (1) the ISort-5875D predictor
that operates in the 5875D functional domain
composition space, and (2) the ISort-47D pre-
dictor that operates in the 47D pseudo-amino
acid composition space with l¼ 27.

RESULTS AND DISCUSSION

To benchmark the prediction quality of the
current method against others and make
the comparison more objectively, the datasets
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constructed by other investigators were used
for demonstration. The datasets constructed by
Emanuellson et al. [2000] contain two redun-
dancy-reduced sets. One is the plant set that
consists of 940 proteins, of which 141 are
destined for the chloroplast, 368 for the mito-
chondrion, 269 for the secretory pathway, and
162 for the other localizations such as nuclear
and cytosolic. The other is the non-plant set
that consists of 2,738 proteins, of which 371 are
destined for the mitochondrion, 715 for the
secretory pathway, and 1,652 for the other
localizations such as nuclear and cytosolic.
According to the report by these authors, the
overall success rate predicted by the TargetP
predictor [Emanuellson et al., 2000] for the
940 plant proteins classified into four different
categories was 85%, and that for the 2,738 non-
plant proteins classified into three categories
was 90%. These are the highest success rates
so far reported for the aforementioned plant
and non-plant datasets. Now for exactly the
same datasets, we used ISort predictor to per-
form prediction.

The computation was carried out in a Silicon
Graphics IRIS Indigo workstation (Elan 4000).
By searching the InterPro database for the
940 protein sequences in the plant set, 745
sequences got hits, and 195 did not. And for the
2,738 protein sequences in the non-plant set,
2,423 got but 315 not. This means that, if only
the functional domain composition approach
was used, 195 proteins in the plant set and 315
in the non-plant set would have no definition,
leading to a failure of identifying their loca-
lization. That is why it is important to hybri-
dize it with the pseudo-amino acid composition
approach, by which not only a protein can
always be defined but also its sequence-order
effects may considerably be reflected. Thus, the
hybrid algorithm was operated according to the
following flowchart: if a query protein got a hit
by search InterPro database, then the ISort-
5875D predictor was used to predict its sub-
cellular location; otherwise, the ISort-47D pre-
dictor was used for the prediction.

The prediction quality was examined by the
jackknife test. For the convenience of readers, a
brief introduction of jackknife test procedure is
given below. During the process of jackknife
tests for the current study, each protein in the
plant or non-plant set is in turn singled out as a
query protein and all the rule-parameters are
computed based on the remaining proteins.

In other words, the subcellular location of each
query protein is identified by the rule para-
meters derived from all the other proteins
except the query one. During the process of
jackknifing both the training dataset and test-
ing dataset are actually open, and a protein will
in turn move from one to the other until all the
proteins have been identified.

Compared with the independent dataset test
and sub-sampling test which are often adopted
in the literature of biology, the jackknife test
is thought the most objective and effective
method for cross-validation in statistical pre-
diction [Zhou, 1998; Zhou and Assa-Munt, 2001];
see, e.g., a monograph [Mardia et al., 1979] for
the mathematical principle and a comprehen-
sive review [Chou and Zhang, 1995] in this
regard. This is because in the independent
dataset test, the selection of a testing dataset
is quite arbitrary, and the accuracy thus ob-
tained lacks an objective criterion unless the
testing dataset is sufficiently large. As for the
sub-sampling test in which a given dataset is
divided into several subsets, the problem is
that the number of possible divisions might
be too large to be handled. For example, in
the treatment by Emanuellson et al. [2000],
proteins in each group were ‘‘truncated to a
number divisible by five’’ and then ‘‘divided into
five equally sized parts for cross-validation.’’
Four of them were used as the training data and
one as the testing data. Thus, the number of
possible divisions for the plant set would be
P¼P1 �P2�P3�P4; where P1¼ 140!

28!28!28!28!28!5! ;
P2 ¼ 365!

73!73!73!73!73!5! ;P3 ¼ 265!
53!53!53!53!53!5! ; and P4 ¼

160!
32!32!32!32!32!5! : Of P1;P2;P3; andP4; the smallest
is P1 � 4 � 1091; indicating the number of
possible divisions would be P � 10365: This is
an astronomical figure, which is too large to be
handled by any existing computers. Hence in
any practical sub-sampling tests as conducted
by Emanuellson et al. [2000], only a very small
fraction of the possible divisions were investi-
gated, and the results thus obtained would be
quite arbitrary and might be overestimated,
as will be further discussed later. Accordingly,
the jackknife test as adopted here is much more
objective and rigorous. The overall success rates
thus obtained are given in Table I. For facili-
tating comparison, the rates obtained by the
other predictors, such as TargetP [Emanuellson
et al., 2000], and Psort [Nakai and Kanehisa,
1992; Nakai and Horton, 1999], are also listed in
the same table. From Table I we can see the
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following: (1) the overall success rates obtained
with ISort, which has combined both the
functional domain and sequence-order effects,
are significantly higher than those from the
other predictors. For example, the overall suc-
cess rates yielded from ISort predictor by the
same sub-sampling test procedure as described
in Emanuellson et al. [2000] are 92.3 and 98.3%
for the plant set and non-plant set, respectively,
which are more than 7 and 8% higher than the
corresponding rates by TargetP, indicating
that the subcellular localization of a protein
is closely related to its function in both the
plant and non-plant cases; (2) the success rates
obtained with ISort by jackknife tests are
remarkably lower than those by sub-sampling
tests. This is fully consistent with the fact that
the results obtained by sub-sampling tests
could not avoid arbitrariness and might be
overestimated, as mentioned above as well as in
many previous publications (see, e.g., [Mardia
et al., 1979; Chou and Zhang, 1995; Zhou, 1998;
Zhou and Assa-Munt, 2001]). Even though,
the overall success rates yielded from ISort
predictor by jackknife tests are still higher
than those from the other predictors by sub-
sampling tests for both the plant and non-plant
protein datasets, which is a compelling evi-
dence to indicate the superiority of the present
approach.

Accordingly, from both the rationality of
testing procedure and the success rates of test
results, the hybridization of the functional
domain composition and pseudo-amino acid
composition as presented in this study can
significantly improve the prediction quality of
subcellular localization of proteins.

CONCLUSION

The pseudo-amino acid composition approach
[Chou, 2001] and the functional domain compo-
sition approach [Chou and Cai, 2002] are two
completely different approaches developed for
improving the prediction quality of protein sub-
cellular location. They are both quite powerful,
but each has its own limitation. The present
study has demonstrated that a hybridization of
the two different approaches can make them
complement each other, and that the introduc-
tion of the ISort predictor can make allowance
for bringing out the best in each other and
making each shining more brilliantly in the
other’s company. This is the essence why the
current method is superior to others in predict-
ing subcellular localization of proteins. It is
instructive to point out that the current ap-
proach can also be used to improve the predic-
tion quality for other protein attributes [Chou,
2002], such as enzyme family classes [Chou and
Elrod, 2003] and protein quaternary structure
attributes [Chou and Cai, 2003].

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers
whose constructive comments were very helpful
in strengthening the presentation of this article.

REFERENCES

Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD.
1994. Molecular biology of the cell, chap. 1. New York &
London: Garland Publishing.

Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E,
Biswas M, Bucher P, Cerutti L, Corpet F, Croning
MDR, Durbin R, Falquet L, Fleischmann W, Gouzy L,
Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A,

TABLE I. Comparison of Localization Predictor Performances on the
Redundancy-Reduced 940 Plant Proteins and 2,738 Non-Plant Proteins

Predictor

Overall success rate

Plant Non-plant

Jackknife (%) Sub-sampling (%) Jackknife (%) Sub-sampling (%)

ISorta 85.4 92.3 91.9 98.3
TargetPbb N/A 85.0 N/A 90.0
Psortc N/A 69.8 N/A 83.2

aThe present paper.
bTargetP is a neural network-based tool for protein subcellular location prediction using N-terminal
sequence information only [Emanuellson et al., 2000].
cPSort is a program widely used for detecting sorting signals in proteins and predicting their subcellular
localization [Nakai and Horton, 1999; Nakai and Kanehisa, 1992].

1202 Chou and Cai



Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn
TM, Pagni M, Servant F, Sigrist CJA, Zdobnov EM. 2001.
The InterPro database, an integrated documentation
resource for protein families, domains and functional
sites. Nucleic Acids Research 29:37–40.

Blobel G. 1976. Extraction from free ribosomes of a factor
mediating ribosome detachment from rough microsomes.
Biochem Biophys Res Comm 68:1–7.

Cai YD, Chou KC. 2003. Nearest neighbour algorithm for
predicting protein subcellular location by combining
functional domain composition and pseudo-amino
acid composition. Biochem Biophys Res Comm 305:
407–411.

Cedano J, Aloy P, P’erez-Pons JA, Querol E. 1997. Relation
between amino acid composition and cellular location of
proteins. J Mol Biol 266:594–600.

Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G. 1999.
Solution structure of BID, an intracellular amplifier of
apoptotic signaling. Cell 96:615–624.

Chou JJ, Matsuo H, Duan H, Wagner G. 1998. Solution
structure of the RAIDD CARD and model for CARD/
CARD interaction in caspase-2 and caspase-9 recruit-
ment. Cell 94:171–180.

Chou JJ, Zhang CT. 1993. A joint prediction of the folding
types of 1,490 human proteins from their genetic codons.
J Theor Biol 161:251–262.

Chou KC. 1995. A novel approach to predicting protein
structural classes in a (20-1)-D amino acid composition
space. Proteins: Struct Funct Genet 21:319–344.

Chou KC. 2001. Prediction of protein cellular attributes
using pseudo-amino-acid-composition, (Erratum Vol. 44,
60). Proteins: Struct Funct Genet 43:246–255.

Chou KC. 2002. A new branch of proteomics: Prediction of
protein cellular attributes. In: Weinrer PW, Lu Q,
editors. Gene cloning & expression technologies. West-
borough, MA: Eaton Publishing. pp 57–70.

Chou KC, Cai YD. 2002. Using functional domain com-
position and support vector machines for prediction of
protein subcellular location. J Biol Chem 277:45765–
45769.

Chou KC, Cai YD. 2003. Predicting protein quaternary
structure by pseudo amino acid composition. Proteins
53:282–289.

Chou KC, Elrod DW. 1999. Protein subcellular location
prediction. Protein Engineering 12:107–118.

Chou KC, Elrod DW. 2003. Prediction of enzyme family
classes. J Proteome Res 2:183–190.

Chou KC, Zhang CT. 1995. Review: Prediction of protein
structural classes. Crit Rev Biochem Mol Biol 30:275–
349.

Claros MG, Brunak S, von Heijne G. 1997. Prediction of N-
terminal protein sorting signals. Curr Opin Struct Biol
7:394–398.

Emanuellson O, Nielsen H, Brunak S, von Heijne G. 2000.
Predicting subcellular localization of proteins based on
their N-terminal amino acid sequence. J Mol Biol 300:
1005–1016.

Lodish H, Baltimore D, Berk A, Zipursky SL, Matsudaira P,
Darnell J. 1995. Molecular cell biology, chap. 3. New
York: Scientific American Books.

Mardia KV, Kent JT, Bibby JM. 1979. Multivariate
analysis. London: Academic Press. pp 322–381.

Murvai J, Vlahovicek K, Barta E, Pongor S. 2001. The
SBASE protein domain library, release 8.0: A collection of
annotated protein sequence segments. Nucleic Acids
Research 29:58–60.

Nakai K, Horton P. 1999. PSORT: A program for detecting
sorting signals in proteins and predicting their subcel-
lular localization. Trends Biochem Sci 24:34–36.

Nakai K, Kanehisa M. 1992. A knowledge base for
predicting protein localization sites in eukaryotic cells.
Genomics 14:897–911.

Nakashima H, Nishikawa K. 1994. Discrimination of
intracellular and extracellular proteins using amino acid
composition and residue-pair frequencies. J Mol Biol
238:54–61.

Pan YX, Zhang ZZ, Guo ZM, Feng GY, Huang ZD, He L.
2003. Application of pseudo amino acid composition for
predicting protein subcellular location: Stochastic signal
processing approach. J Protein Chem 22:395–402.

Reinhardt A, Hubbard T. 1998. Using neural networks for
prediction of the subcellular location of proteins. Nucleic
Acids Res 26:2230–2236.

Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner
AM. 1987. Molecular biology of the gene 4th edn. Menlo
Park, CA: Benjamin/Cummings Publishing Company, Inc.

Zhou GP. 1998. An intriguing controversy over protein
structural class prediction. J Protein Chem 17:729–738.

Zhou GP, Assa-Munt N. 2001. Some insights into protein
structural class prediction. Proteins: Struct Funct Genet
44:57–59.

Zhou GP, Doctor K. 2003. Subcellular location prediction
of apoptosis proteins. Proteins: Struct Funct Genet 50:
44–48.

Proteins Subcellular Location Prediction 1203


